1,127 research outputs found

    Hierarchical Fractal Weyl Laws for Chaotic Resonance States in Open Mixed Systems

    Full text link
    In open chaotic systems the number of long-lived resonance states obeys a fractal Weyl law, which depends on the fractal dimension of the chaotic saddle. We study the generic case of a mixed phase space with regular and chaotic dynamics. We find a hierarchy of fractal Weyl laws, one for each region of the hierarchical decomposition of the chaotic phase-space component. This is based on our observation of hierarchical resonance states localizing on these regions. Numerically this is verified for the standard map and a hierarchical model system.Comment: 5 pages, 3 figure

    A discontinuous Galerkin method for the Vlasov-Poisson system

    Full text link
    A discontinuous Galerkin method for approximating the Vlasov-Poisson system of equations describing the time evolution of a collisionless plasma is proposed. The method is mass conservative and, in the case that piecewise constant functions are used as a basis, the method preserves the positivity of the electron distribution function and weakly enforces continuity of the electric field through mesh interfaces and boundary conditions. The performance of the method is investigated by computing several examples and error estimates associated system's approximation are stated. In particular, computed results are benchmarked against established theoretical results for linear advection and the phenomenon of linear Landau damping for both the Maxwell and Lorentz distributions. Moreover, two nonlinear problems are considered: nonlinear Landau damping and a version of the two-stream instability are computed. For the latter, fine scale details of the resulting long-time BGK-like state are presented. Conservation laws are examined and various comparisons to theory are made. The results obtained demonstrate that the discontinuous Galerkin method is a viable option for integrating the Vlasov-Poisson system.Comment: To appear in Journal for Computational Physics, 2011. 63 pages, 86 figure

    Mass Density of Individual Cobalt Nanowires

    Full text link
    The mass density of nanowires is determined using in-situ resonance frequency experiments combined with quasi-static nanotensile tests. Our results reveal a mass density of 7.36 g/cm3 on average which is below the theoretical density of bulk cobalt. Also the density of electrodeposited cobalt nanowires is found to decrease with the aspect ratio. The results are discussed in terms of the measurement accuracy and the microstructure of the nanowires.Comment: 3 Figure

    InP-quantum dots in Al0.20Ga0.80InP with different barrier configurations

    Full text link
    Systematic ensemble photoluminescence studies have been performed on type-I InP-quantum dots in Al0.20Ga0.80InP barriers, emitting at approximately 1.85 eV at 5 K. The influence of different barrier configurations as well as the incorporation of additional tunnel barriers on the optical properties has been investigated. The confinement energy between the dot barrier and the surrounding barrier layers, which is the sum of the band discontinuities for the valence and the conduction bands, was chosen to be approximately 190 meV by using Al0.50Ga0.50InP. In combination with 2 nm thick AlInP tunnel barriers, the internal quantum efficiency of these barrier configurations can be increased by up to a factor of 20 at elevated temperatures with respect to quantum dots without such layers.Comment: physica status solidi (c) (Proceedings of QD 2008

    Quantitative Topographical Characterization of Thermally Sprayed Coatings by Optical Microscopy

    Get PDF
    Topography measurements and roughness calculations for different rough surfaces (Rugotest surface comparator and thermally sprayed coatings) are presented. The surfaces are measured with a novel quantitative topography measurement technique based on optical stereomicroscopy and a comparison is made with established scanning stylus and optical profilometers. The results show that for most cases the different methods yield similar results. Stereomicroscopy is therefore a valuable method for topographical investigations in both quality control and research. On the other hand, the method based on optical microscopy demands a careful optimization of the experimental settings like the magnification and the illumination to achieve satisfactory result

    Fracture strength and Young's modulus of ZnO nanowires

    Get PDF
    The fracture strength of ZnO nanowires vertically grown on sapphire substrates was measured in tensile and bending experiments. Nanowires with diameters between 60 and 310 nm and a typical length of 2 um were manipulated with an atomic force microscopy tip mounted on a nanomanipulator inside a scanning electron microscope. The fracture strain of (7.7 +- 0.8)% measured in the bending test was found close to the theoretical limit of 10% and revealed a strength about twice as high as in the tensile test. From the tensile experiments the Young's modulus could be measured to be within 30% of that of bulk ZnO, contrary to the lower values found in literature.Comment: 5 pages, 3 figures, 1 tabl

    Characterisation of micromechanical properties using advanced techniques

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 - August 2, 201

    Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems

    Full text link
    A microscopic theory is used to study the optical properties of semiconductor quantum dots. The dephasing of a coherent excitation and line-shifts of the interband transitions due to carrier-carrier Coulomb interaction and carrier-phonon interaction are determined from a quantum kinetic treatment of correlation processes. We investigate the density dependence of both mechanisms and clarify the importance of various dephasing channels involving the localized and delocalized states of the system.Comment: 12 pages, 10 figure

    Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test

    Get PDF
    A novel method for in situ scanning electron microscope (SEM) micro-compression tests is presented. The direct SEM observation during the instrumented compression testing allows for very efficient positioning and assessment of the failure mechanism. Compression tests on micromachined Si pillars with volumes down to 2 μm3 are performed inside the SEM, and the results demonstrate the potential of the method. In situ observation shows that small diameter pillars tend to buckle while larger ones tend to crack before failure. Compressive strength increases with decreasing pillar diameter and reaches almost 9 GPa for submicrometer diameter pillars. This result is in agreement with earlier bending experiments on Si. Difficulties associated with precise strain measurements are discusse

    A comparison of microtensile and microcompression methods for studying plastic properties of nanocrystalline electrodeposited nickel at different length scales

    Get PDF
    A comparison of microcompression and microtensile methods to study mechanical properties of electrodeposited nanocrystalline (nc) nickel has been performed. Microtensile tests that probe a volume of more than 2 × 106 μm3 show reasonable agreement with results from microcompression tests that probe much smaller volumes down to a few μm3. Differences between the two uniaxial techniques are discussed in terms of measurements errors, probed volume and surface effects, strain rate, and influence of stress state. Uniaxial solicitation in compression mode revealed several advantages for studying stress-strain propertie
    • …
    corecore